1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
| import keras import matplotlib.pyplot as plt import numpy as np from keras import Input, Model from keras import backend as K from keras.callbacks import EarlyStopping from keras.datasets import mnist from keras.engine.saving import load_model from keras.layers import Conv2D, Flatten, Dense, Lambda, Reshape, Conv2DTranspose from scipy.stats import norm
input_shape = (28, 28, 1) batch_size = 32 latent_dim = 2
def get_data(): (x_train, _), (x_test, _) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = x_train.reshape((x_train.shape[0],) + input_shape) x_test = x_test.reshape((x_test.shape[0],) + input_shape) x_train = random_data(x_train) x_test = random_data(x_test) print('x_train.shape', x_train.shape) print('x_test.shape', x_test.shape) return x_train, x_test
def random_data(data): indexs = np.arange(data.shape[0]) np.random.shuffle(indexs) return data[indexs]
def create_model(): conv2D_layer1 = Conv2D(32, 3, padding='same', activation='relu', strides=(2, 2)) conv2D_layer2 = Conv2D(64, 3, padding='same', activation='relu', strides=(2, 2)) flatten_layer = Flatten() dense_layer1 = Dense(64, activation='relu') mean_layer = Dense(latent_dim) variance_layer = Dense(latent_dim)
lambda_layer = Lambda(mean_variance_merge, output_shape=(latent_dim,))
hide_shape = (14, 14, 64) dense_layer2 = Dense(np.prod(hide_shape), activation='relu') reshape_layer = Reshape(hide_shape) conv2DTranspose_layer1 = Conv2DTranspose(32, 3, padding='same', activation='relu', strides=(2, 2)) conv2D_layer4 = Conv2D(1, 5, padding='same', activation='sigmoid') vae_loss_layer = VaeLossLayer()
input_tensor = Input(shape=input_shape) output_tensor = input_tensor output_tensor = conv2D_layer1(output_tensor) output_tensor = conv2D_layer2(output_tensor) output_tensor = flatten_layer(output_tensor) output_tensor = dense_layer1(output_tensor) mean_output_tensor = mean_layer(output_tensor) variance_output_tensor = variance_layer(output_tensor)
output_tensor = lambda_layer([mean_output_tensor, variance_output_tensor])
output_tensor = dense_layer2(output_tensor) output_tensor = reshape_layer(output_tensor) output_tensor = conv2DTranspose_layer1(output_tensor) output_tensor = conv2D_layer4(output_tensor) output_tensor = vae_loss_layer([input_tensor, output_tensor, mean_output_tensor, variance_output_tensor])
vae = Model(input_tensor, output_tensor) vae.name = 'vae' vae.compile(optimizer='adam', loss=None) vae.summary()
output_tensor = input_tensor output_tensor = conv2D_layer1(output_tensor) output_tensor = conv2D_layer2(output_tensor) output_tensor = flatten_layer(output_tensor) output_tensor = dense_layer1(output_tensor) mean_output_layer = mean_layer(output_tensor) encoder = Model(input_tensor, mean_output_layer) encoder.name = 'encoder' encoder.summary()
input_tensor = Input(shape=lambda_layer.output_shape[1:]) output_tensor = input_tensor output_tensor = dense_layer2(output_tensor) output_tensor = reshape_layer(output_tensor) output_tensor = conv2DTranspose_layer1(output_tensor) output_tensor = conv2D_layer4(output_tensor) decoder = Model(input_tensor, output_tensor) decoder.name = 'decoder' decoder.summary()
return encoder, decoder, vae
def create_vae_loss_tensor(input_tensor, output_tensor, mean_output_tensor, variance_output_tensor): input_tensor = K.flatten(input_tensor) output_tensor = K.flatten(output_tensor) xent_loss_tensor = keras.metrics.binary_crossentropy(input_tensor, output_tensor) kl_loss_tensor = -5e-4 * K.mean( 1 + variance_output_tensor - K.square(mean_output_tensor) - K.exp(variance_output_tensor), axis=-1) vae_loss_tensor = K.mean(xent_loss_tensor + kl_loss_tensor) return vae_loss_tensor
class VaeLossLayer(keras.layers.Layer): """建一个自定义层用来计算损失"""
def call(self, inputs): input_tensor = inputs[0] output_tensor = inputs[1] mean_output_tensor = inputs[2] variance_output_tensor = inputs[3] vae_loss_tensor = create_vae_loss_tensor(input_tensor, output_tensor, mean_output_tensor, variance_output_tensor) self.add_loss(vae_loss_tensor, inputs=inputs) return input_tensor
def mean_variance_merge(args): mean_output_tensor, variance_output_tensor = args epsilon_tensor = K.random_normal(shape=(K.shape(mean_output_tensor)[0], latent_dim), mean=0., stddev=1.) return mean_output_tensor + K.exp(variance_output_tensor) * epsilon_tensor
def fit(vae, x_train, x_test): early_stopping = EarlyStopping(monitor='val_loss', patience=2) return vae.fit( x=x_train, y=None, shuffle=True, epochs=10, batch_size=batch_size, validation_data=(x_test, None), callbacks=[early_stopping], )
def save_h5(encoder, decoder, vae): encoder.save('my_vae-encoder.h5') decoder.save('my_vae-decoder.h5') vae.save('my_vae-vae.h5')
def load_h5(): encoder = load_model('my_vae-encoder.h5') decoder = load_model('my_vae-decoder.h5') vae = load_model('my_vae-vae.h5', custom_objects={'latent_dim': latent_dim, 'VaeLossLayer': VaeLossLayer}) encoder.summary() decoder.summary() vae.summary() return encoder, decoder, vae
def show_result(decoder): n = 15 digit_size = 28 figure = np.zeros((digit_size * n, digit_size * n)) grid_x = norm.ppf(np.linspace(0.05, 0.95, n)) grid_y = norm.ppf(np.linspace(0.05, 0.95, n))
for i, yi in enumerate(grid_x): for j, xi in enumerate(grid_y): z_sample = np.array([[xi, yi]]) z_sample = np.tile(z_sample, batch_size).reshape(batch_size, 2) x_decoded = decoder.predict(z_sample, batch_size=batch_size) digit = x_decoded[0].reshape(digit_size, digit_size) figure[i * digit_size: (i + 1) * digit_size, j * digit_size: (j + 1) * digit_size] = digit
plt.figure(figsize=(10, 10)) plt.imshow(figure, cmap='Greys_r') plt.show()
def show_fit(history): if 'acc' in history.history and 'val_acc' in history.history: acc = history.history['acc'] val_acc = history.history['val_acc'] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc, 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b', label='Validation acc') plt.title('Training and validation accuracy') plt.legend()
if 'loss' in history.history and 'val_loss' in history.history: loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(1, len(loss) + 1) plt.figure() plt.plot(epochs, loss, 'bo', label='Training loss') plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss') plt.legend()
plt.show()
x_train, x_test = get_data() encoder, decoder, vae = create_model() history = fit(vae, x_train, x_test) save_h5(encoder, decoder, vae) show_result(decoder) show_fit(history)
|